A Inputting data
This chapter will illustrate how to input data that is stored in csv files in various common formats.
one response variable
If your data look like this:
Year Species metric.tons
2018, Fish1, 1
2019, Fish1, 2
2018, Fish2, 3
2019, Fish2, 4
2018, Fish3, 6
2019, Fish4, NA
with this code:
test <- read.csv("Data/test.csv", stringsAsFactors = FALSE)
save(test, file="test.RData")
Many response variables
Read in a file where the data are in columns. If your data look like this with each species (or site) across the columns:
Year,Anchovy,Sardine,Chub mackerel,Horse mackerel,Mackerel,Jack Mackerel
1964,5449.2,12984.4,1720.7,4022.4,NA,NA
1965,4263.5,10611.1,1278.5,4158.3,NA,NA
1966,5146.4,11437.8,802.6,3012.1,NA,NA
Use this code:
test <- read.csv("Data/test.csv", stringsAsFactors = FALSE)
reshape2::melt(test, id="Year", value.name="metric.tons", variable.name="Species")
save(test, file="test.RData")
Many response variables, two time variables
If your data also have, say, a month (or qtr) column, use this code:
Year,Month,Anchovy,Sardine,Chub mackerel,Horse mackerel,Mackerel,Jack Mackerel
1964,1,5449.2,12984.4,1720.7,4022.4,NA,NA
1964,2,4263.5,10611.1,1278.5,4158.3,NA,NA
1964,3,5146.4,11437.8,802.6,3012.1,NA,NA
Use this code:
test <- read.csv("Data/test.csv", stringsAsFactors = FALSE)
reshape2::melt(test, id=c("Year","Month"), value.name="metric.tons", variable.name="Species")
save(test, file="test.RData")
One response variable, multiple explanatory variables
Year, Anchovy, SST, Mackerel
1964, 5449.2, 24.4, 1720.7
1965, 4263.5, 30.1, 1278.5
1966, 5146.4, 23.8, 802.6
Use this code:
test <- read.csv("Data/test.csv", stringsAsFactors = FALSE)
save(test, file="test.RData")
Use this lm()
model (or gam() etc):
fit <- lm(Anchovy ~ SST + Mackerel, data=test)