8.5 Forecast evaluation
We can compute the forecast performance metrics as usual.
Look at the forecast so you know what years and months to include in your test data. Pull those 12 months out of your data using the window()
function.
Use accuracy()
to get the forecast error metrics.
## ME RMSE MAE MPE MAPE MASE
## Training set -0.0001825075 0.5642326 0.4440532 -9.254074 25.40106 0.7364593
## Test set 0.3143200919 0.7518660 0.6077172 65.753096 81.38568 1.0078949
## ACF1 Theil's U
## Training set 0.07490341 NA
## Test set 0.05504107 0.4178409
We can do the same for the ARIMA model.
fit <- forecast::auto.arima(traindat)
fr <- forecast::forecast(fit, h=12)
forecast::accuracy(fr, testdat)
## ME RMSE MAE MPE MAPE MASE
## Training set 0.01076412 0.5643352 0.3966735 -1.219729 26.91589 0.6578803
## Test set 0.79665978 0.9180939 0.7966598 19.587692 53.48599 1.3212549
## ACF1 Theil's U
## Training set -0.05991122 NA
## Test set -0.12306276 0.5993699